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1. Introduction

The distinction between the scale invariance and conformal invariance was certainly an

issue at the advent of the latter. According to a legend [1], when a provocative question

about the difference between the two was addressed by a Western physicist at an interna-

tional conference on scale invariance in Dubna, a great mathematician, who was a chairman

at the session, literally said “There is no mathematical difference, but when some young

people want to use a fancy word they call it Conformal Symmetry”. A young brilliant

physicist in the Soviet Union suddenly stood up and yelled “15 parameters!” but it echoed

apparently unnoticed.

This issue is not so trivial, and the great mathematician was in some sense correct from

the viewpoint of empirical science because we do not know any good physical examples of

scale-invariant but non-conformal field theories in four-dimension. In two-dimension, his

claim is even mathematically true because, as later discovered [2 – 4], one can give a proof

of the equivalence between the two notions under certain conditions such as unitarity.

Today, the question whether the conformal symmetry is a fancy alternative word for

the scale invariance is a hot topic in high energy phenomenology. Followed by a seminal

work by H. Georgi [5], many works have been done to study a possible existence of a scale

invariant (but non-conformal) hidden sector in our real world and experimental evidence

for such “unparticle physics”, which is spectacular in many cases. A very few authors have

recognized the difference between the scale invariance and the conformal invariance in this

context, and we have stressed the severe unitarity bound constraint coming from the latter

in [6, 7]. Given the theoretical situation above, the experimental discovery of scale invariant

but non-conformal “unparticle” would be a supreme surprise in theoretical physics.
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As we mentioned, quantum examples of scale invariant but non-conformal field the-

ory are very scarce (see e.g. [8] for a notable exception).1 In this paper, we add a new

two-dimensional example of such based on the Liouville field theory. The model is fully

quantized by virtue of the exact solvability of the Liouville field theory. Although our

model is not unitary as can be inferred from the general “proof” of the equivalence be-

tween scale invariance and conformal invariance in two-dimension, it may be applied to the

world-sheet formulation of the perturbative string theory.

The organization of the paper is as follows. In section 2, we review the relation between

scale invariance and conformal invariance from the viewpoint of conserved currents. In sec-

tion 3, we introduce a class of classical examples of scale invariant but non-conformal field

theories in two-dimension. In section 4, we investigate a quantum version of such a model

based on the Liouville field theory. The quantum Schwinger-Dyson equation in the Liou-

ville field theory, which is crucial to understand the violation of the conformal symmetry,

is thoroughly studied. In section 5, we give some further discussions of our results.

2. Scale invariance vs conformal invariance

Einstein’s special relativity suggests that a basic space-time symmetry of the quantum field

theory (in d-dimension) is generated by the Poincare algebra:

i[Jµν , Jρσ ] = ηνρJµσ − ηµρJνσ − ησµJρν + ησνJρµ

i[Pµ, Jρσ ] = ηµρP σ − ηµσP ρ

[Pµ, P ν ] = 0 . (2.1)

For massless scale invariant theory, one can augment this Poincare algebra by adding the

dilatation operator D as

[Pµ,D] = iPµ

[Jµν ,D] = 0 . (2.2)

The generalization of Coleman-Mandula theorem [10] asserts (for d ≥ 3) that the maximally

enhanced bosonic symmetry of the space-time algebra for massless particles is given by the

conformal algebra (plus some internal symmetries):

[Kµ,D] = −iKµ

[Pµ,Kν ] = 2iηµνD + 2iJµν

[Kµ,Kν ] = 0

[Jρσ ,Kµ] = iηµρKσ − iηµσKρ , (2.3)

where Kµ generate special conformal transformation.

As is clear from the group theory structure above, the conformal symmetry demands

the scale invariance but the reverse is not necessarily true: scale invariance does not always

1In [9], other classical examples of scale invariant field theory in four-dimension without conformal

invariance are given. However, the scale invariance is spontaneously broken there.
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imply conformal invariance.2 A simple example of such theories with scale invariance

but without conformal invariance is a free massless vector field with no gauge invari-

ance [13, 14]. The two-dimensional massless vector field in this context was thoroughly

investigated in [15].

However, in reality, every known unitary quantum scale invariant field theory in higher

dimension than two is also conformal. The above-mentioned example of free massless vector

field with no gauge invariance is not a unitary theory. Furthermore, one can even give a

proof of the equivalence between the scale invariance and the conformal invariance for

unitary theories with a discrete spectrum in two-dimension [4].

The distinction between the scale invariance and the conformal invariance in field

theories can be summarized by the properties of the symmetric energy-momentum tensor

Tµν . The dilatation current Sµ can be generated by

Sµ = xνT
νµ + Jµ , (2.4)

where Jµ is a so-called virial current. Conservation of the dilatation current immediately

implies

T µ
µ = −∂µJµ . (2.5)

Therefore, the necessary and sufficient condition of the scale invariance is that the energy-

momentum tensor is a total divergence.

Moreover, if the virial current itself is a total derivative:

T µ
µ = ∂µ∂νLµν (d ≥ 3)

= ∂µ∂µL (d = 2) , (2.6)

one can improve the energy-momentum tensor so that it is traceless (see e.g. [4] for details)

Θµ
µ = 0 . (2.7)

By using this improved traceless energy-momentum tensor, one can construct conserved

currents

jµ
v = vνΘνµ , (2.8)

where the vector vµ satisfies

∂µvν + ∂νvµ =
2

d
ηµν∂ρv

ρ . (2.9)

The currents jµ
v generate all the conformal transformation. In particular, one can obtain

the special conformal transformation associated with Kµ by taking vµ = ρµxνxν−2xµρνxν ,

where ρµ is a constant vector parameter.

In this way, the study of the scale invariant but non-conformal field theory is reduced

to the problem whether the virial current is a total derivative or not. In two-dimension,

one can show that 〈Θµ †
µ Θµ

µ〉 = 0 with scale invariance [2 – 4], which implies Θµ
µ = 0

(conformal invariance) for a unitary and compact theory.

2See [11, 12] for earlier references on the interplay between scale invariance and conformal invariance.
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3. Classical Liouville field theory with dangerous perturbation

Reference [14] showed a class of two-dimensional examples of classical field theories that

are scale invariant but have no conformal invariance. The model is based on the classi-

cal Liouville field theory, so we would like to begin with a brief review of the conformal

invariance of the classical Liouville field theory. The Liouville field theory3 has the action

SLiouville =
1

4π

∫

d2z
(

∂µφ∂µφ + 4πµe2bφ
)

, (3.1)

where the classical limit corresponds to b → 0.

The Liouville equation can be obtained as an equation of motion:

∂µ∂µφ = 4πµbe2bφ . (3.2)

An energy-momentum tensor can be constructed from the Noether prescription:

Tµν = −∂µφ∂νφ +
ηµν

2

(

∂ρφ∂ρφ + 4πµe2bφ
)

. (3.3)

Of course, one could improve the energy-momentum tensor at this point by adding a total

derivative ∂µ∂νφ − ηµν∂ρ∂
ρφ, but we do not do it here.

The trace of the energy-momentum tensor can be evaluated by using the equation of

motion as

T µ
µ = 4πµe2bφ =

1

b
∂µ∂µφ . (3.4)

Thus, the virial current Jµ = −1
b∂µφ is a total derivative, and the Liouville field theory is a

conformal field theory. Indeed, one can construct the traceless energy-momentum tensor as

Θµν = Tµν +
1

b
(∂µ∂νφ − ηµν∂

ρ∂ρφ) , (3.5)

which will yield a holomorphic energy-momentum tensor4

T (z) ≡ Θzz(z) = −∂φ∂φ +
1

b
∂2φ . (3.6)

A class of classical scale invariant but non-conformal field theories is obtained [14] by

coupling the Liouville field theory to a sigma model

S =

∫

d2z GMN (XN )∂µXM∂µXN + SLiouville + Sint (3.7)

by the interaction

Sint =
λ

4π

∫

d2z h(XN )∂µφ∂µφ (3.8)

3We use the convention of [16].
4A quantum correction will modify the energy-momentum tensor as T (z) = −∂φ∂φ + Q∂2φ, where

Q = b + b−1.
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with a nontrivial scalar function h(XN ) in the target space. The model is classically scale

invariant with obvious scaling dimensions D(XN ) = 0 and D(e2bφ) = 2.

However, the model has no conformal invariance. To see this, let us compute the trace

of the energy-momentum tensor:

T µ
µ = 4πµe2bφ =

1

b
∂µ

[(

1 + λh(XN )
)

∂µφ
]

, (3.9)

which is divergence of the virial current, and, as a consequence, the theory is expectedly

scale invariant. However, the associated virial current

Jµ = −1

b

(

1 + λh(XN )
)

∂µφ (3.10)

is not a total derivative for non-trivial h(XN ), so the model is not a conformal field theory.

Before we go on constructing a quantum version of the above scale invariant but non-

conformal field theory, several comments are in order.

• The Liouville interaction is crucial. For µ = 0, one can recover the conformal invari-

ance by setting D(φ) = 0. Thus, exact treatment of the Liouville interaction would

be needed when quantized.

• Quantum mechanically, one has to show that h(XN ) has a non-trivial fixed point

as well as the target space metric GMN (XN ). One-loop approximation will give

you Einstein-dilaton equation coupled with the non-trivial tachyon. The Liouville

interaction is very difficult to treat in this approach because it is strongly coupled,

and higher α′ corrections cannot be neglected. We take a different root to establish

the fixed point in the next section.

• The model gives a “counterexample” for the proof of the equivalence between the

scale invariance and conformal invariance in two-dimension. Assuming the nontrivial

fixed point for h(XN ), we see that the proof fails because of the non-compactness5

of the target space (especially in the Liouville direction).

4. Quantum Liouville wave

In this section, we construct a concrete quantum example of scale invariant but non-

conformal field theory based on the model presented in section 3. We take a sigma model

as a flat target-space with signature (1, 1). The action is

S =
1

4π

∫

d2z
(

∂µX1∂µX1 − ∂µX0∂µX0
)

+ SLiouville + Sint . (4.1)

5The non-compactness of the target space also played a crucial role in the examples of scale invariant

but non-conformal field theories studied in [8] .
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The interaction takes a form of the light-cone wave:6

Sint =
λ

4π

∫

d2z
(

eiv(X1−X0)∂µφ∂µφ
)

. (4.2)

In other words, we take h = eiv(X1−X0).

As before, the trace of the (classical) energy-momentum tensor

T µ
µ =

1

b
∂µ

[(

1 + λeiv(X1−X0)
)

∂µφ
]

(4.3)

cannot be improved to be zero. Alternatively, the formerly holomorphic energy-momentum

tensor now becomes

T = −∂X1∂X1 + ∂X0∂X0 −
(

1 + λeiv(X1−X0)
)

∂φ∂φ + Q∂2φ , (4.4)

which is classically no longer holomorphic

∂̄T =
1

b
∂[ ∂∂̄φ − πµbe2bφ ] 6= 0 . (4.5)

As a consequence, to see the quantum mechanical violation of the conformal symmetry

of this system, one can investigate the following correlation functions

b
〈

∂̄T (xT ) O1 · · ·ON

〉

=
〈

∂(∂∂̄φ − πµbe2bφ)(xT ) O1 · · ·ON

〉

=
∑

n

1

n!

〈

∂(∂∂̄φ − πµbe2bφ)(xT ) O1 · · ·ON

[−λ

4π

∫

d2z eiv(X1−X0)∂µφ∂µφ

]n〉

λ=0

,(4.6)

where Oi are inserted at x = xi. We have neglected possible contact terms in the first

equality, which do not play any role in the conformal symmetry breaking.7 The second

equality is a perturbative series evaluated by the unperturbed Liouville field path integral.

Actually, the perturbative series is not a formal summation but contains only a single term

for each set of Oi with fixed charge due to the charge conservation for X1 and X0. In

the following, we will show that (4.6) does not vanish so that the conformal invariance is

indeed violated quantum mechanically.

As a side remark, the first equality in (4.5) might seem to rely on the classical equation

of motion and need possible quantum modifications in the evaluation of (4.6). However,

6The action is not hermitian with our choice of the interaction. However, since our discussion does not

depend v as we will see in the following, one can formally perform analytic continuation v → iv to make

the action hermitian. See also footnote 13 for a related point. In any case, we do not require unitarity, so

this is not a primary concern of our construction.
7Note that the conformal invariance (or breaking) does not say anything about the structure of the

contact terms. What is relevant in the following, however, is that for non-zero λ, we have to integrate the

additional contact terms over the inserted position to obtain non-zero non-contact terms that will break

conformal invariance.

– 6 –



J
H
E
P
0
7
(
2
0
0
8
)
1
0
9

the Liouville equation of motion is exact, so for λ = 0, we do not need any modification.8

As a perturbative quantum expansion in λ, order by order quantum redefinition of the

energy-momentum tensor does not recover the holomorphicity because it is broken at the

classical level and the quantum modification cannot compensate the classical piece, as long

as the classical equation of motion is compatible with the exact quantization as we will

show explicitly.

Even with the Liouville equation of motion ∂∂̄φ − πµbe2bφ = 0 for the unperturbed

action (λ = 0), the series (4.6) does not generically vanish. The quantum equation of

motion (Schwinger-Dyson equation) possesses a contact term at xi = xT :

2

π

〈

(∂∂̄φ − πµbe2bφ)(xT ) O1 · · ·ON

〉

λ=0
=

∑

i

〈

O1 · · ·
δOi(xi)

δφ(xT )
ON

〉

λ=0

. (4.7)

Formally, one can obtain the Schwinger-Dyson equation from the invariance of the path

integral measure
∫

Dφ O1 · · ·ON e−S =

∫

D(φ + δφ) O1 · · ·ON e−S

⇐⇒ 0 =

∫

Dφ
δ

δφ

(

O1 · · ·ON e−S
)

. (4.8)

The contact terms in the Schwinger-Dyson equation at z = xT after integrating over the

inserted position z will give you the failure of the holomorphicity of the energy-momentum

tensor in (4.6).

In the following, we focus on the contact terms in the Liouville equation of motion in

the Liouville correlation functions denoted by 〈· · · 〉L among the Liouville primary vertex

operators Vα ∼ e2αφ. From the path integral argument, we expect the following identity:

2

π

〈

(∂∂̄φ − πµbe2bφ)(xT ) e2α1φ(x1) · · · e2αN φ(xN )
〉

L

=
∑

i

2αiδ(xi − xT )
〈

e2α1φ(x1) · · · e2αN φ(xN )
〉

L
. (4.9)

The quantum treatment of the higher equations of motion in Liouville field theory was

initiated in [17] (see also [18] for a subsequent work). We first introduce the logarithmic

primary operator:

V ′
0 =

1

2

∂

∂α
Vα|α=0 ≃ φ . (4.10)

Then, [17] showed that the correlation function is invariant under the replacement (we

recall L−1 = ∂)

L−1L̄−1V
′
0 = πµbVα=b . (4.11)

8The only exception is the case where v = 0. In this case, the contact term between the Liouville

equation of motion and the perturbative interaction after integration, which is actually nothing but a

deliberate separation of the Liouville kinetic term, gives you contribution ∂̄T = −
1
b
∂(λ∂∂̄φ). This can be

absorbed by a redefinition of the holomorphic energy-momentum tensor as T → T + λ
b
∂2φ. Note that this

redefinition cannot be done for non-zero v even classically.
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The derivation of [17] is only valid up to contact terms. We now show a refinement of his

argument to derive the contact term contributions to the quantum equation of motion.

As in [17], we concentrate on the three-point function

〈

L−1L̄−1V
′
α(xT )Vα1(x1)Vα2(x2)

〉

L
(4.12)

and study α → 0 limit. The three-point function takes the form

〈

V ′
α(xT )Vα1(x1)Vα2(x2)

〉

L

=
1

2

∂

∂α

[

C(α,α1, α2)

|x1 − x2|2∆1+2∆2−2∆|xT − x1|2∆1+2∆−2∆2 |xT − x2|2∆2+2∆−2∆1

]

, (4.13)

where the conformal weight of the Liouville primary operator Vα is given by ∆ = α(Q−α).

The structure constant C(α,α1, α2) of the Liouville field theory was computed [19 – 21] to be

C(α,α1, α2) =[πµγ(b2)b2−2b2 ](Q−α−α1−α2)/b

× Υ′(0)Υ(2α)Υ(2α1)Υ(2α2)

Υ(α + α1 + α2 − Q)Υ(α + α1 − α2)Υ(α1 + α2 − α)Υ(α2 + α − α1)
,(4.14)

where Υ(x) is defined by

log Υ(x) =

∫ ∞

0

dt

t

[

(

Q

2
− x

)2

e−t − sinh2(Q
2 − x) t

2

sinh bt
2 sinh t

2b

]

(4.15)

for 0 < Re(x) < Q and analytically continued to the whole complex plane. See e.g. [20, 16]

for some properties of the special functions.

For generic value of α1 and α2, the structure constant C(α,α1, α2) has a simple

zero as α → 0, and only the term with ∂αC(α,α1, α2) in (4.13) contributes as discussed

in [17]. This is consistent with the contact term contribution that should yield like δ(xT −
x1)〈Vα1(x1)Vα2(x2)〉L, which is non-zero only in the α1 → α2 limit (or α1 → Q−α2 limit).

We, thus, take a careful limit of α ≡ ǫ → 0 and α1−α2 ≡ iκ → 0.9 In this limit, (4.13)

becomes

∂

∂ǫ

[

2ǫ

(ǫ + iκ)(ǫ − iκ)

(

S(α1)

|x1 − x2|4∆1−2ǫQ|x1 − xT |2Qǫ|x2 − xT |2Qǫ
+ O(ǫ, κ)

)]

, (4.16)

where S(α1) is the two-point function of the Liouville field theory: 〈Vα1(1)Vα2(0)〉L =

S(α1)πδ(iα1 − iα2) + πδ(iα1 + iα2 − iQ), whose explicit form is given by

S(α) =
(πµγ b2)(Q−2α)/b

b2

γ(2αb − b2)

γ(2 − 2α/b − 1/b2)
, (4.17)

where γ(x) = Γ(x)
Γ(1−x) . We regard the first factor in (4.16) as the delta-function:

limǫ→0
2ǫ

(ǫ+iκ)(ǫ−iκ) = 2πδ(κ). Then, the derivative with respect to ǫ gives the logarithmic

term

2πδ(iα1 − iα2)S(α1)|x1 − x2|−4∆12Q ( log |x1 − xT | + log |x2 − xT | ) + · · · , (4.18)

9The reason for i in α1 − α2 is that we take the physical normalizable Liouville momenta: α ∈
Q

2
+ iR.
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where the ellipsis contains only xT independent terms.

We take the laplacian of (4.18) with xT from the insertion of L−1L̄−1 = ∂∂̄. By using

the formula ∂∂̄ log |z|2 = πδ(z), we obtain the sought-after contact term:

〈

(L−1L̄−1V
′
0 − πµbVb)(xT ) Vα1(x1)Vα2(x2)

〉

L

=2πδ(iα1 − iα2)S(α1)|x1 − x2|−4∆1πQ ( δ(x1 − xT ) + δ(x2 − xT ) ) . (4.19)

In this way, we have shown that the contact terms indeed exist in the exact Liouville

equation of motion, and from (4.6), we can now prove that the conformal invariance is

broken for nonzero λ in the exact quantization of our model. In particular, note that the

operator ∂µφ∂µφ inserted in (4.6) can be realized as a specific limit of the Liouville primary

operator: ∂µφ∂µφ = 4 : L−1V
′
0L̄−1V

′
0 :.

Another suggestive but not complete way to understand the importance of the con-

tact terms in the conformal symmetry breaking is to perform partial integration inside the

perturbative deformation to study the insertion of
∫

d2zφ∂∂̄φ. By using the undeformed Li-

ouville equation of motion, it is equivalent to the insertion of
∫

d2zφe2bφ = 1
2

∫

d2z ∂
∂αVα|α=b.

The above computation directly shows that there exist contact terms for the vertex inser-

tion ∂
∂αVα|α=b, and the integration over the inserted position z gives a non-contact term

contribution to the energy-momentum tensor insertion.10

Nevertheless, the limiting procedure is a little bit subtle and one might claim an

objection to the above derivation especially because (4.19) is different from the Schwinger-

Dyson equation from the naive path integral (4.9). However, the naive Schwinger-Dyson

equation (4.9) cannot be correct for the exact Liouville correlation function among Vα.

It is in contradiction with the reflection symmetry [20] of the Liouville field theory:

Vα ∼ S(α)VQ−α.

To see this, suppose Vα = e2αφ and use the naive Schwinger-Dyson equation (4.9):

2

π

〈

(L−1L̄−1V
′
0 − πµbVb)(xT ) Vα1 · · · VαN

〉

L
= 2α1δ(xT − x1)〈Vα1 · · ·VαN

〉L + · · ·(4.20)

Alternatively, one could replace Vα1 with S(α1)VQ−α1, and use the Schwinger-Dyson equa-

tion, and then replace VQ−α1 with S(α1)
−1Vα1 :

2

π

〈

(L−1L̄−1V
′
0 − πµbVb)(xT ) Vα1 · · ·VαN

〉

L

=
2

π
S(α1)

〈

(L−1L̄−1V
′
0 − πµbVb)(xT ) VQ−α1 · · · VαN

〉

L

=2(Q − α1)δ(xT − x1)〈Vα1 · · ·VαN
〉L + · · · , (4.21)

which is in contradiction with (4.20).

Any α dependence in the contact term is inconsistent with the reflection symmetry

of the quantum Liouville field theory. The limiting procedure we showed in the above

is the most natural one consistent with the reflection symmetry. Indeed, the discussion

10We should note, however, that there is an additional contribution
R

d2z∂µ
h

eiv(X1
−X0)

i

φ∂µφ which

cannot be computed in this approach.
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here suggests a deep insight about the Liouville primary vertex operator Vα. It seems

quite plausible that the classical interpretation of Vα is not e2αφ, but rather a mixture

e2αφ+S(α)e2(Q−α)φ+· · · .11 With the interim substitution of Vα ∼ e2αφ+S(α)e2(Q−α)φ, the

path integral approach in (4.9) agrees with the exact Schwinger-Dyson equation obtained

from the exact three-point function with our limiting procedure.

4.1 Scale invariance

So far, we have discussed that the conformal symmetry is broken due to the coupling

between the Liouville sector and the free boson sector. Even quantum mechanically, the

Schwinger-Dyson equation of the Liouville field theory demands that the holomorphy of

the energy-momentum tensor is violated. Now the question is whether the scale invariance

is disturbed by this perturbation quantum mechanically. We would like to show some

arguments that the interaction (4.2) is exactly marginal in the sense that the scale

invariance is preserved.

First of all, as a necessary condition, our interaction Lagrangian has a quantum scaling

dimension D = 2, which gives a first order perturbative condition for the scale invariance

of the theory. To see higher order corrections, one can focus on the partition function

Zλ =

∫

DφDX1DX0 e−S

=
∑

n

1

n!

〈(−λ

4π

∫

d2z eiv(X1−X0)∂µφ∂µφ

)n〉

λ=0

= Zλ=0 . (4.22)

The last equality is due to the charge conservation. From this formal expression, one

might naively conclude that, according to the general recipe of the conformal perturbation

theory, we would not introduce any regularization or cut-off dependence, and hence the

higher order beta function vanishes because the perturbative expansion of the partition

function itself vanishes. However, in order to evaluate the beta function, what one has to

really study is the singularity structure of the operator product expansions (OPEs) inside

the formally vanishing perturbative corrections to the partition function that could be

non-zero by adding background charges at infinity.

To address this question, we take a closer look at the singularity structure of the

of OPEs of the Liouville sector and the sigma model sector separately. Firstly, in the

Liouville sector, it is crucial to notice that the operator ∂µφ∂µφ is an exactly marginal

deformation to the Liouville field theory: it just changes the normalization of the kinetic

term.12 This guarantees that there are no singular terms that cannot be absorbed by the

field re-definition in the Liouville OPE from such deformation. More formally, one could

define ∂µφ∂µφ as 4 : L−1V
′
0L̄−1V

′
0 : in the abstract Liouville field theory language, and

11This can be also inferred from the analysis of the mini-superspace reflection amplitudes [20].
12One should note that because of the changes of the normalization of the kinetic term, the deformation

does change the central charge of the Liouville field theory through the Fradkin-Tseytlin counter term [22, 23]

δQφR, which vanishes on the flat Euclidean space we are using. The non-compactness of the target-space,

however, makes the deformation exactly marginal by avoiding the c-theorem [3].
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study the OPE. To evaluate the OPE among ∂µφ∂µφ, one can first investigate the OPE

among the Logarithmic primary operators:

L−1V
′
0(z) · L̄−1V

′
0(0) ∼ S(b)

|z|2

L−1V
′
0(z) · L−1V

′
0(0) ∼ 1

z2
+

S(b) log(z̄)

z2
, (4.23)

and so on. Note that L−1V
′
0 (or L̄−1V

′
0) is no-longer a left (right) moving primary operator

but still is a right (left) moving primary operator [17]. One can now see that the leading

OPE singularity among ∂µφ∂µφ is exactly the same as that for the free scalar field theory,

which means that the addition of the term simply changes the normalization of the kinetic

term of the Liouville field, as in the free scalar field theory. The additional logarithmic term

should be renormalized by the Fradkin-Tseytlin counter term, which is indeed necessary to

keep the scale invariance even in the Liouville theory with no deformation (e.g. Polyakov

regularization [24] gives limw→z log |w − z|2 = −2 log |ρ(z)|2, where
√

gR = −4∂∂̄ log |ρ|2).
Secondly, in the sigma model sector, we note the fact that the light-cone scalar is non-

singular in its OPE, namely (X1 −X0)(z) · (X1 −X0)(0) ∼ 0 which implies eiu(X1−X0)(z) ·
eiv(X1−X0)(0) ∼ ei(u+v)(X1−X0)(0), suggests that there are actually no additional singular

contributions to the whole perturbation series.

Combining all these two sectors together, we have no hidden cut-off dependence in

the partition function (even with background charge), and, therefore, we preserve the scale

invariance under the perturbation to all oder in λ.13 Of course, some correlation functions

are modified and operators acquire extra anomalous dimension matrices, but they should

be renormalized independently of the beta function.

5. Discussion

In this paper, we have shown an example of scale invariant but non-conformal quantum

field theories in two dimension. From the general argument [4], such a theory should be

non-compact or non-unitary. In our case, the theory is both non-compact and non-unitary.

The former is due to the Liouville direction and the latter is due to the time-like direction

in the sigma model. Indeed, the correlation function of the trace of the (improved) energy-

momentum tensor
〈

Θµ †
µ Θµ

µ

〉

(5.1)

vanishes due to the charge conservation,14 while the trace itself does not vanish as we have

seen in the previous section. The failure of the proof in [4] here is due to this non-unitary

nature of the correlation functions, which manifests itself as the lack of reflection positivity.

13The argument here actually suggests that a broader class of non-conformal but scale invariant field

theories be obtained by choosing arbitrary left-moving function h(XN ) = h(X1
− X0).

14The argument is as follows. We set Θµ
µ = −

4
b
∂∂̄φ + 4πµe2bφ. The perturbative computation with

respect to λ should be done at λ = 0 because of the charge conservation. Then, the correlation function

vanishes due to the Liouville equation of motion.
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Although our model might have no physical significance as a two dimensional field

theory because of the lack of the unitarity, it may have some applications in string theory,

where the world-sheet theory needs not be unitary as long as ghosts are removed by the

BRST constraint. From the viewpoint of the string worldsheet perturbation theory, this

kind of exactly marginal but non-conformal deformation would be quite dangerous because

it induces a world-sheet conformal anomaly, and it would lead to a potential swampland

from the target-space viewpoint. Fortunately, the central charge of the Liouville sector is

cφ = 1 + 6(b + b−1)2 ≥ 25, and the two extra dimensions for X1 and X0 make it difficult

to embed our models in the critical string theory.

This dangerous situation could occur in the super-critical string theory (see e.g. [25, 26]

and references therein), where we can introduce the time-like linear dilaton as well to reduce

the central charge of the X0 scalar as cX0 = 1−6(β−β−1)2 where β is the slope of the time-

like linear dilaton. The world-sheet perturbation e(2iω−(β−β−1))X0−2ikX1
∂φ∂̄φ could be an

exactly marginal deformation (Liouville wave) under the condition − (β−β−1)2

4 −ω2+k2 = 0.

If the perturbation is exactly marginal, such a background would be inconsistent as a string

background although the scale invariance is intact. It would be very interesting to see

whether the Liouville wave deformation is possible within the super-critical string theory

and investigate a possibly critical consequence of such a dangerous deformation.
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